Sparse Kernel Modelling: A Unified Approach
نویسندگان
چکیده
A unified approach is proposed for sparse kernel data modelling that includes regression and classification as well as probability density function estimation. The orthogonal-least-squares forward selection method based on the leave-one-out test criteria is presented within this unified data-modelling framework to construct sparse kernel models that generalise well. Examples from regression, classification and density estimation applications are used to illustrate the effectiveness of this generic sparse kernel data modelling approach.
منابع مشابه
Orthogonal-least-squares regression: A unified approach for data modelling
A unified approach is proposed for data modelling that includes supervised regression and classification applications as well as unsupervised probability density function estimation. The orthogonalleast-squares regression based on the leave-one-out test criteria is formulated within this unified data-modelling framework to construct sparse kernel models that generalise well. Examples from regre...
متن کاملOrthogonal-Least-Squares Forward Selection for Parsimonious Modelling from Data
The objective of modelling from data is not that the model simply fits the training data well. Rather, the goodness of a model is characterized by its generalization capability, interpretability and ease for knowledge extraction. All these desired properties depend crucially on the ability to construct appropriate parsimonious models by the modelling process, and a basic principle in practical ...
متن کاملOrthogonal-Least-Squares Forward Selection for
The objective of modelling from data is not that the model simply fits the training data well. Rather, the goodness of a model is characterized by its generalization capability, interpretability and ease for knowledge extraction. All these desired properties depend crucially on the ability to construct appropriate parsimonious models by the modelling process, and a basic principle in practical ...
متن کاملCAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کاملEfficient Nonparametric Bayesian Modelling with Sparse Gaussian Process Approximations
Sparse approximations to Bayesian inference for nonparametric Gaussian Process models scale linearly in the number of training points, allowing for the application of powerful kernel-based models to large datasets. We present a general framework based on the informative vector machine (IVM) (Lawrence et al., 2003) and show how the complete Bayesian task of inference and learning of free hyperpa...
متن کامل